

Martech Polar Risk Assessment in Ice

RAdm Nigel S. Greenwood, RCN (Ret'd), FRIN, FNI, Master Mariner

Fundamental Considerations

- Area
- Date
- Ice-Class
- Identification of ice
- Speed/Power
- Manoeuverability
- Redundancy
- Sustainability
- Survivability
- Experience

Outline

- Ice Class
- Access to the Cdn Arctic
- Tactical Risk Assessment
- Strategic Risk Assessment
- "Safe" Speed?
- Experience
- Ice Navigators

Based on Schedule 1 of the Arctic Shipping Safety and Pollution Prevention Regulations with added row PC 1-7

- Historical/empirical approach
- Zones in descending order of difficulty
- Allowed access dates by CASPPR Ice Class
- PC1-7 equate to Type A (?)
- System rigid, inflexible ... not compatible with climate change
- Depends on established equivalence with Cdn ice classes

Ice Class - Equivalents

Column 1	Column 2		Ref:	ASS	SPPR,	, Sche	edule	es 1 8	k 2									
Category	Zone 1	ſ	2															8
Arctic Class 10, CAC 1	All year		ur Los ment	Cor	struc	tion S	tanda	rds for	• Түре	s A, B), C, D	and E	Vesse	els				hedule 2
Arctic Class 8, CAC 2	Jul. 1 to Oct. 15.		95, 2019		Column 1 Typo of	Column 2 American Bureau of Shipping	Column 3 Burocu	Column 4 China Classification	Column 5 Nippon Kaiji Kyokai	Column 6	Column 7 Finnish- Swedish Ice Class Rulcs	Column 8 International Association of Classification on Sociotics	Column 9 Korean Register of Shipping	Column 10 Lloyd's Hegister ct Shipping	Column 11 Poiski Rejestr Statkow	Column 12 Hina Sorvicos	Column 13 Russian Maritime Rogistor of	
Arctic Class 7	Aug. 1 to Sept. 30			<u>Item</u> 1	Vessel Туро Л	(ABS) Ico Closs A0	Veritas (BV) ICE CLASS IA SUPER	Society (CCS)	(ClassNK) NS (Class 1A Super Ice Strongthoni	DNV-GL Ico (1A*) or ICE-1A or E4	(FSICR) 1A Supor	(IACS) PC1 to PC7	(KR)	(LR) Ico Class IAS FS (+) or Ico Class	(PRS) L1A	(RINA) ICE CLASS 1A SUPER	Shipping UL or LU5 or Arc5	
Arctic Class 6, CAC 3	Aug. 15 to Sept. 15			2	Туре В	loe Class R0	ICF CLASS	Ice Class R1	ny) NS (Class 1A Ice Strengtheni	ice (1A) or ICE-1A or ES	14		14	1AS FS (+) Ice Class 1A FS (+) or Ice Class 1A FS	11	ICF CLASS 1A	11 or 11/4 or Arc4	
Class 4 Arctic Class 3,	Aug. 10 to Sept. 15 Aug. 20 to Sept. 15			3	Түрө С	Ice Class CO	ICE CLASS IB	Ice Class B2	ng) NS (Class 1B Ico Strengtheni	ICE (1B) OF ICE 1B or E2	1B ?	-	18	Ice Class 1B FS (1) or Ico Class 1B FS	L2	ICE CLASS 19	L2 or LU3 or Ico 3	
CAC 4 Arctic Class 2	No Entry		55 70	4	Түрө D	Ice Class D0	ICE CLASS IC	Ice Class B3	NS (Class 1C Ice Strengtheni ng)	lce (1C) or ICE-1C or F1	10	-	10	Ice Class 10 FS (4) or Ice Class 10 FS	L3	ICE CLASS 10	L3 or LU2 or Ica ?	
Arctic Class 1A	No Entry			6	Туро Е	Ico Closs E0	1D	Ico Class B	NS (Class 1D Ice Strongthoni	ICE C or E	Catogory II		1D	loo Class 1D or Ice Class 1E	ы	1D	L1 or LU1 or Ice 1	ANNEXE 2
Arctic Class 1	No Entry	l							ng/									
Туре А	No Entry		Саг	nadi	an AS	SPPR c	lasse	's from	ז ZDS	table	: (Sch	ed 1, le	eft)					
Туре В	No Entry		Equ	uiva	lents	to for	eign i	ce cla	sses (.	Sched	1 2, al	bove)						
Туре С	No Entry		•	Di	fficu	lty o	fest	tablis	shing	g ice	-clas	ss eq	uiva	lent	S			
Type D	No Entry						_											

- Applicable for ZDS/AIRSS
- Also "Categories": A (PC1-5), B (PC6-7), C (others)

Type E

AIRSS - Arctic Ice Regime Shipping System

Table 8. A IR	S Ice Mu	tipliers								
		CPEN WATER	GREY ICE	GREY WHITE ICE	THIN FIRST YEAR 1ST STAGE	THIN FIRST YEAR 2ND STAGE	MEDIUM FIRST YEAR	THICK FIRST YEAR	SECOND YEAR	MULTI YEAR
VESSEL CATEGORY	ice Type Symbol	ow	6	GW	ToFY1	TnFY2	MFY	TKFY	SY	мү
	Egg Code	(1 or 2)	(4)	(3 or 5)	(8)	(7 or 9)	(1.)	(6 or 4 .)	(8.)	(7. or ?.)
CAC 3		2	2	2	2	2	2	2	1	4
CAC 4		2	2	2	2	2	z	1	-12	-3
Туро А (И. Sepor)		2	2	2	2	2	1	4	-3	-4
Type B (M)		2	2	1	1	1	4	·2	-4	-4
Type C (IB)		2	2	1	1	-1	-Z	-3	-4	-4
Type D (IC)		2	2	1	-1	-1	-2	-3	-4	-4
Type E (Notice- strengthened)		2	1	đ	đ	-1	-2	3	A	
			The IM o	en los edjusted	før ice docsy b	iya value ef+1 f	or MFY and this	loar.		

Ice Numeral (IN) = cumulative addition of partial concentrations if ice types weighted by multipliers for ice type and ice class Eg: $(C_1 \times M_1) + (C_2 \times M_2) + ... + (C_x \times M_x) = IN$

♦ If IN=>0, "GO"; if IN<0, "NO GO"</p>

- Flexible to changing ice conditions in Zones
- Allows access outside of ZDS limits
- Allows access on basis of reported or observed conditions
- Adjustments of IM for rough or decayed ice
- Must be observed/calculated by an Ice Navigator
- CAC1/2 effectively unrestricted (outside system)

POLARIS – Polar Operational Limits and Risk Assessment System

Implemented icw the Polar Code Oriented to PC/Type-class vessels, vessels built after 1 Jan 17

- Fundamentally similar methodology to AIRSS
- Allows more flexibility (dependent on Ice Class) to proceed with operational precautions (speed reduction) iaw PWOM
- Some differences in definition of ice types
- Allows considerably more flexibility for PC vessels which are significantly undervalued in ZDS
- No continuous hierarchy of PC/Type except in POLARIS

Table 5: POL	ARIS Risk	Index V	alues										
		ICE FREE / OPEN WATER	NEW	GREY	GREY WHITE	THIN FY, 1 st STAGE	THIN FY, 2 ND STAGE	MEDIUM FY (< 1 M)	MEDIUM FY	THICK FY ICE	SECOND YEAR ICE	LIGHT MULTI YEAR (< 2.5 M)	HEAVY MULTI YEAR
VESSEL CATEGORY	ICE TYPE SYMBOL	IF/OW	N	G	GW	TNFY1	TNFY2	MFY-1	MFY	TKFY	SY	LMY- 2.5	нмү
	EGG CODE	1 OR 2		4	3 OR 5	8	7 OR 9		1•	6 OR 4•	8•		
PC1		3	3	3	3	2	2	2	2	2	2	1	1
PC2		3	3	3	3	2	2	2	2	2	1	1	0
PC3		3	3	3	3	2	2	2	2	2	1	0	-1
PC4		3	3	3	3	2	2	2	2	1	0	-1	-2
PC5		3	3	3	3	2	2	1	1	0	-1	-2	-2
PC6		3	2	2	2	2	1	1	0	-1	-2	-3	-3
PC7		3	2	2	2	1	1	0	-4	-2	-3	-3	-3
IA Super (Type A)		3	2	2	2	2	1	0	-1	-2	.3	-4	-4
IA (Type B)		3	2	2	2	1	0	-1	-2	-3	-4	-5	-5
IB (Type C)		3	2	2	1	0	-1	-2	-3	-4	-5	-6	-6
IC (Type D)		3	2	1	0	-1	-2	-3	-4	-5	-6	-7	-8
Not ke Strengthened (Type E)		3	1	0	-1	-2	3	-4	-5	-6	-7	-8	-8

Risk Index Outcome (RIO) = cumulative addition of partial concentrations if ice types weighted by Risk Index Values (RIV) for ice type and ice class Eg: $(C_1 \times RIV_1) + (C_2 \times RIV_2) + ... + (C_2 \times RIV_2) = RIO$

- ♦ If RIO=>0, "GO";
- if -10<RIO<0, "NO GO," (Type ships) or "GO with operational precautions iaw PWOM" (PC3-7);
- if RIO <-10, "NO GO" (except PC1-2)

Ice Class Tables from TC "Guidelines for Assessing Ice Operational Risk"

Table 4 : Pola	Table 4 : Polar Class Descriptions							
POLAR CLASS	GENERAL DESCRIPTION							
PC 1	Year-round operation in all Polar Waters							
PC 2	Year-round operation in moderate multi year ice conditions							
PC 3	Year-round operation in second-year ice which may include multi year inclusions							
PC 4	Year-round operation in thick first-year ice which may include old ice inclusions							
PC 5	Year-round operation in medium first-year ice which may include old ice inclusions							
PC 6	Summer/autumn operation in medium first-year ice which may include old ice inclusions							
PC 7	Summer/autumn operation in thin first-year ice which may include old ice inclusions							

PC descriptions suit a variety of scenarios and their relationships are set to provide a smooth gradation of capability. PC vessels may operate inside the ZDS on the same dates allowed for Type A (IA Super) vessels and make use of POLARIS when outside those access dates.

Table 3: (Construc	tion Sta	ndards	for Type Vessels							
TYPE OF VESSEL	ABS	BV	ccs	CLASSNK	DNV-GL	FSICR	KR	LR	PRS	RINA	RMRS
Туре А	lce Class IAA	ICE CLASS IA SUPER	lce Class B1*	NS (Class 1A Super Ice Strengthening)	Ice (1A*) or ICE-1A or E4	IA Super	IA Super	Ice Class 1AS FS or Ice Class 1AS FS (+)	L1A	ICE CLASS 1A SUPER	UL or LU5 or Arc5
Туре В	lce Class IB	ICE CLASS IA	lce Class B1	NS (Class 1A Ice Strengthening)	Ice (1A) or ICE-1A or E3	IA	IA	Ice Class 1A FS (+) or Ice Class 1A FS	L1	ICE CLASS 1A	L1 or LU4 or Arc4
Туре С	lce Class IC	ICE CLASS IB	lce Class B2	NS (Class 1B Ice Strengthening)	Ice (1B) or ICE-1B or E2	IB	IB	Ice Class 1B FS (+) or Ice Class 1B FS	L2	ICE CLASS 1B	L2 or LU3 or Ice 3
Type D	lce Class D0	ICE CLASS IC	lce Class B3	NS (Class 1C Ice Strengthening)	Ice (1C) or ICE-1C or E1	IC	IC	Ice Class 1C FS (+) or Ice Class 1C FS	L3	ICE CLASS 1C	L3 or LU2 or Ice 2
Туре Е	lce Class E0	ID	lce Class B	NS (Class 1D Ice Strengthening)	ICE-C or E	Category II	ID	Ice Class 1D or Ice Class 1E	L4	1D	L4 or LU1 or Ice 1

Based on Schedule 2 of the Arctic Shipping Safety and Pollution Prevention Regulations minus the column for the PC categories, which are set out in the IACS Unified Requirements for Polar Ships.

FSICR categories are based on HELCOM Rec 25/7.

Martech Polar • Applicable for POLARIS (PC/Type) or AIRSS (Type)

IceNav™

(Proprietary system of Enfotec)

Martech Polar

- Presentation of CIS shapefiles in GIS application
- Superimposed ship position, route, radar input
- Ability to display geo-ref'd photos and satellite radar files
- Calculation of AIRSS and POLARIS IN/RIO from shapefiles
- Generation of Ice Regime Routing Msg as req'd by TC

IceNav

Superimposition of CIS ice charts, satellite observations and ship route from MSV Nordica 2017 NWP transit

Understanding and Identifying Old Ice in Summer

Understanding and Identifying Old Ice in Summer, National Research Council of Canada http://globalcryospherewatch.org/cryonet/methods_docs/ ICETECH 08 Old Ice Guide.pdf

Strategic Assessment (feasibility)

<u>CASRAS</u> – Canadian Arctic Shipping Risk Assessment System

(developed by National Research Council Canada)

<u>CASRAS</u> is an integrated risk assessment system for marine transportation in the Canadian North that enables sound decision-making leading to safer, more efficient shipping in this harsh environment while ensuring the minimal negative impact on the life of Northerners, and decreasing the risk of polluting the environment.

- CASRAS provides a picture of risk assessment factors, either actual or statistical, based on multiple geographic-historical data sets (bathymetry, ice, metocean, wildlife, conservation areas, community services/infrastructure, places of refuge, nautical knowledge, chart coverage, etc...)
- Parameters or filters (time, area, route, conditions, etc) are determined by the user
- CASRAS then uses cumulative ice data since 1980 to calculate AIRSS IN for projected routes and determine % frequency of passable conditions in specified timeframes (eg: month by month)

Current content: 76 datasets; 230 GB; over 200,000 files

Examples extracted from CASRAS

CASRAS Interface **AIRSS Ice Numeral evaluation** Canadian Arctic Shipping Risk Assessment System 1. Historical Analysis: Windows of operations, Go/No Go by Minimum IN Ice Numeral Canadă Helizai Reserve Constitutionald IN >= 0 (Go) IN < 0 (No Go) Historical Temperature As Regulations: Polar Service Temperature Jar Feb Jun Lowest Mean Daily Low Temperature (LMDLT) and Vesse Day of year Polar Service Temperature (PST) Compliance **Polar Service** Temperature LMDL1 PST of Vessel -30(C) Above PST (Compliant) Mean Daily Low Temperature - 30 Year Assessment Balow DOT (Not Complete Average, November 2nd Ja 2016 Daily

Slide courtesy of Ivana Kubat, NRC

Location of mammal sensitive sites within 150NM:

<u>CASRAS</u> – Canadian Arctic Shipping Risk Assessment System (developed by National Research Council Canada)

Current work:

Two main objectives are:

- Develop mariner knowledge specific to the Wester Arctic trade corridors, with a focus on community resupply and commercial activities in the Northwest Territories
- 2. Integrate advanced sea-ice forecasting models into the CASRAS platform

CASRAS use:

- CASRAS has been used and tested onboard CCG icebreakers
- Onboard several commercial vessels (by Captains who have provided feedback on CASRAS development)
- CASRAS has been licensed to the Marine Institute as a training tool -Polar Code and Ice Navigation training program at the Centre for Marine Simulations

CASRAS can run on a standalone PC laptop Cost: TBC ... \$\$\$

Slide courtesy of Ivana Kubat, NRC

Safe Speed?

Ref: CMIINF, Ice Certificate for 70,000DWT Arctic Shuttle Tankers, 2007

Russian Ice Certificate/Passport

- Tailored examination of performance for each ship (class)
- Examines attainable speeds in different ice regimes and resulting effects, to draw limits of prudent operation
- Recognizes that ships may be powered to exceed safe speed in some ice conditions
- Examines pressure/no-pressure scenarios, different load conditions
- Proposes safe speeds, safe following distance for escort
- "Passport" issued for specific ship/ dates, assigning equiv. Russian ice class and approving independent/escorted operations in varied ice conditions (pre-PC)

Empirical Approach to Safe Speed

- Enfotech study done in 1996 to help validate early AIRSS work in determining how safe IR were
- Safe Speed in range
 2-6kts as Ice Numeral
 approaches (+) 0-10

Martech Polar

Analytical Approach to Safe Speed:

-	Defence Research and Becherche et développement pour la défense Canada CAN UNCLASSIFIED	Considerations of Naval Ops in Polar Waters
	DRDC RDDC technologysciencetechnologie	 Sustainability
		 Damage control
	Safe Speed Assessment of DRDC Notional	 Redundancy
	Destroyer in Ice Phase 2 of Ice Capability Assessment	 Top-side icing
	Dr. Claude Daley Daley R&E	 Sea Intakes
	John Doiny ABS Harsh Environment Technology Center Katherine Daley Daley R&E	 Metallurgy
	Prepared by: Daley R&E 64 Cochrane St, St John's, NL PSPC Contract Number: W7707-175891	 Structural strength
	Technical Authority: Dr. Malcolm Smith, Defence Scientist Contractor's date of publication: April 2017	• Shell plating strength
Со	mputer based simulation of hull form/	Power
stru	ucture response to ice interactions	Hull form
*	Martech Polar	• Speed

Used with permission of Dr C. Daley

Modeling of ice impacts:

- "Notional Destroyer" of ~7700t
- Hard ice, TFY or MY (6MPa)
- Glancing blows on the bow (~fr14)
- Direct Load Limit and Large Deflection cases
- Modeled isolated floes and pack ice
- Ice thickness variable 0.2-1.0m
- Result indicates "Technical Safe Speeds"

Table 1: Notional Destroyer - Main Particulars

Particular	Beginning of Life (no ice accretion)	End of Life (with max ice accretion)					
Length overall	151.4 m						
Overall depth	16.5 m						
Amidships depth	14.0 m						
Maximum breadth	18.7 m						
Displacement	7673 t	9095 t					
Length along waterline	142.8 m	143.5 m					
Length between perpendiculars	137.8 m	138.5 m					
Amidships location a	68.9 m	69.2 m					
Longitudinal center of gravity*	72.0 m	73.8 m					
Waterline breadth	16.8 m	17.0 m					
Draft	6.7 m	7.5 m					
Block Coefficient	0.48	0.51					
Distance aft from forward perpendicular (FP). The FP is 0.80 m and 1.48 m forward of frame 0							
(F0 at x=0) for the beginning and end of life, respectively.							

Note: no modeling of bow sonar dome!!

Used with permission of Dr C. Daley

* Assumes shell-plating deformation acceptable...

Figure 52: Summary plot of 5 cm deflection limit speed curves versus ice thickness and floe size

- Marginal capability to operate in pack ice
- Cautious operation in very light pack ice of small floes, limited thickness
- At 6kts, limited to operations in brash ice
- Contact at 6kt with floes
 of 20m diameter and
 60cm thickness
 acceptable (with
 deformation)
- Increasing probability of deformation with increasing concentration

Used with permission of Dr C. Daley

For 5000t, PC5, Patrol Vessel (RCN AOPS ~ 6600t)

Ref: Dolny, SSC-473, Methodology For Defining Technical Safe Speeds For Light Ice-strengthened Government Vessels Operating In Ice, 2018 Table 1.1: Risk Index Outcome criteria

RIO _{ship}	Ice classes PC1-PC7	Ice classes below PC 7 and ships not assigned an ice class
RIO ≥ 0	Normal operation	Normal operation
-10 ≤ RIO < 0	Elevated operational risk*	Operation subject to special consideration**
RIO < -10	Operation subject to special consideration**	Operation subject to special consideration**

IACS

POLARIS and Speed

Ref: IMO MSC Circ-1 1519

1.4 Elevated Operational Risk

1.4.1 Ships operating in an elevated risk ice regime, limit the speed to the values indicated in table 1.2. Oper provision of additional watch keeping or use of icebreaker may impair the ship manoeuvrability, the operation should

Table 1.2 Recommended speed limits for el

Ice Class	Recomm Speed Li
PC1	11 knots
PC2	8 knots
PC3-PC5	5 knots
Below PC5	3 knots

POLARIS: Speed reduction in Negative RIOs

Table 1.3 Marginal capability speed limitations

Ship Category (ice class)	Independent Operation	Escorted Operation
	Speed (knots)	Speed (knots)
A (PC1 – PC2)	NA	NA
A (PC3 – PC5)	5 knots	5 knots
B (PC6 – PC7)	3 knots	3 knots
C (IA Super - IA)	NA	3 knots
C (below IA)	NA	NA

- Acknowledges that there is not a finite point when the ship cannot operate
- · Based on IACS ice class rule formulations

Variability of Ice Coverage from Year to Year

Variability ...

Experience

CASPPR "Ice Navigator"

- Canadian requirement under ASSPPR for operation under AIRSS
- 30 days "in ice"

Canadian Polar Waters Advanced Trng Certificate

- Adv Trng + 2mo sea service in PW or in waters with acceptable ice conditions
- (til 2020) 3mo of sea service in last 5yr, of which 1mo in PW and 2mo in ice*

Nautical Institute "Ice Navigator Certification"

- Professional certification scheme introduced by the NI in 2017
- Level II = Adv Trng + 50d at sea as Master/OOW, of which 30d "in ice"
- Grandfathering: Level II = 90d "in ice" or Trng + 50d "in ice"
- 5 yr renewal = 30d in ice
- Canadian recognized Ice Navigators provide more than Ice Advice;
 - they provide local knowledge, experienced interface with local authorities and
 - $\circ~$ a network of info exchange, interpretation and understanding of Cdn Regulations

* IMO does not require the time in ice

RV Xue Long, NWP 2017

Conclusions:

- P5 ("P***-Poor Planning Predicts Performance")
- More info is better (*limited internet is false economy!*)
- Distinguish between Old and FY ice
- Avoidance is key
- Know your capabilities & limitations
- Practice patience
- Engage experience

Questions?

RAdm Nigel S. Greenwood CMM, CD, RCN (Ret'd) Master Mariner FRIN, FNI

4O22 Rainbow Hill Lane Victoria, BC Canada V8X OA6

1 (250) 507-8445

GreenwoodMaritime.com

www.martechpolar.com info@martechpolar.com

